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Abstract. For over 40 years, the Geostationary Operational Environmental Satellite (GOES) system has provided frequent 

snapshots of the Western Hemisphere, with its data used for a variety of tasks ranging from weather forecasting to wildfire 

detection. Located on the GOES-16, GOES-17, and GOES-18 platforms, the Advanced Baseline Imager (ABI) is the first 15 
GOES-series imager that meets the precision requirements (e.g., ≥ 10 bits per datum) for high-quality, aerosol-related 

research. Here, we present a pixel-level (up to 1 km) Multi-Angle Geostationary Aerosol Retrieval Algorithm (MAGARA) 

that leverages the ABI instruments on the GOES-16 and GOES-17 platforms, as well as the differences in autocorrelation 

time-scales between surface reflectance, aerosol type, and aerosol loading. MAGARA retrieves pixel-level aerosol loading 

and fine-mode fraction at up to the cadence of the measurements (10 minutes), fine-and-coarse mode aerosol particle 20 
properties at a daily cadence, and surface properties under a framework that combines the unique information content in 

multi-angle radiances (e.g., sensitivity to aerosol type from multiple scattering-angle observations) with the robust surface 

characterization inherent to temporally tiled algorithms such as the MAIAC method. 

We present three case studies, tiling radiances for several days over the Desert Southwest (2 cases) and the Pacific 

Northwest (1 case).  We observed/retrieved smoke from the following major fires: the Camp Fire (November 5th-12th, 2018), 25 
the Williams Flats Fire (July 29th-August 8th, 2019), and the Kincade Fire (October 23rd-November 1st, 2019). Because 

GOES-17 was not making observations during the Camp Fire, we present this as a unique case demonstrating the efficacy of 

the multi-angle algorithm using only a single ABI sensor. We compare MAGARA retrievals of fine-mode (FM) AOD, 

coarse-mode (CM) AOD, and single-scattering albedo (SSA) with coincident AErosol RObotic NETwork (AERONET) 

spectral deconvolution algorithm (SDA) and inversion retrievals for the same period. We also compare MAGARA results 30 
against bias-corrected NOAA GOES-16 and GOES-17 retrieved 550 nm AOD. 
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For the 8,443 coincidences of MAGARA and the NOAA bias-corrected product with AERONET, MAGARA 

(NOAA bias-corrected product) 550 nm AOD error statistics are as follows: median-absolute error (MAE) = 0.016 (0.021), 

root-mean-squared error (RMSE) = 0.040 (0.049), and linear correlation coefficient (r) = 0.785 (0.666).  At pixel-level 

resolution, the disparity between MAGARA and the NOAA bias-corrected product increases substantially, with MAGARA 35 
suffering less degradation in the results, likely due to lower pixel-to-pixel noise. 

We report the following over-land MAGARA 500 nm fine-mode fraction error statistics for the 384 

MAGARA/AERONET coincidences with MAGARA 500 nm AOD > 0.3: MAE=0.031, RMSE=0.100, and r=0.902. 

Combined with the presented figures of daily averaged retrieved aerosol particle properties, this suggests that MAGARA has 

good sensitivity to fine-mode fraction over land, especially for smoky regions. 40 
 We also compare retrievals of MAGARA spectral single-scattering albedo with AERONET. Results suggest that a 

1-parameter bias correction can substantially reduce MAGARA errors at high AOD.  For the MAGARA retrieved spectral 

AOD > 0.5 (n=116), this bias correction reduces MAE by 65% (0.028 à 0.010), RMSE by 50% (0.030 à 0.015), and 

improves correlation by 0.03 (0.84 à 0.87).  

MAGARA performs best in regions where surface reflectance varies over long-time scales with minimal clouds. 45 
This represents a large portion of the western half of the US, much of North-Central Africa and the Middle East, some of 

Central Asia, and much of Australia.  For these regions, aerosol type and aerosol loading on time scales as short as 10 

minutes could allow for novel research into aerosol-cloud interactions, improvements to air-quality modeling and 

forecasting, and tighter constraints on direct aerosol radiative forcing. 

1 Introduction 50 

With the Television Infrared Observation Satellite (TIROS-1) launch in 1960, weather forecasting entered the space age. 

Although the imager onboard TIROS-1 was only operational for a couple of months, within 10 years of the TIROS-1 launch, 

NASA had launched an additional 20 meteorological satellites into low Earth orbit (LEO). The first full-disk imagery from 

geostationary orbit was acquired from the Applications Technology Satellite (ATS-1) on December 11, 1966. Five more ATS 

series satellites were launched over the next 10 years, including ATS-3, which took the first true-color image from 55 
geostationary orbit. Interestingly, Warnecke and Sunderlin (1968) present dual views from ATS-1 and ATS-3, with images 

from the two stapled together only 7 hours apart, resulting in a montage of the Atlantic and Pacific Oceans. Nearly 55 years 

later, it is now possible to view nearly all sub-polar (within ~60° latitude of the equator) regions of the planet within a few 

minutes of each other. 

 To be designated a geostationary platform, a satellite must maintain an orbit ~35,800 km above any particular point 60 
on the equatorial belt wrapping around the Earth (0° inclination). At that altitude and inclination, the satellite is stationary 

relative to any point on the ground, as its orbital period matches the planet’s rotational period. The GOES program officially 

began over 45 years ago, with the launch of GOES-1 on October 16, 1975 (https://www.nesdis.noaa.gov/news/40-years-of-
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goes-the-anniversary-of-goes-1, last accessed 08/24/2022). Since the launch of GOES-1, major advances have been made to 

the onboard Earth-viewing imager design, resulting in significant improvements in the number of spectral bands, spatial 65 
resolution, temporal cadence, radiometric accuracy, geometric registration, and bit depth (i.e., the amount of information in a 

given pixel of data). The latest generation of GOES satellites, designated the R-series, began with the launch of GOES-16 

(i.e., GOES-R) on November 19, 2016. After a check-out period to determine that the spacecraft/instruments were operating 

nominally, the spacecraft was maneuvered to 75.2° W, declared operational, and designated GOES-East on December 18, 

2017 (Schmit et al., 2018). GOES-17 (i.e., GOES-S) was launched in March 2018, moved to 137.2° W, and declared 70 
operational as GOES-West in February 2019 (Wang et al., 2020). Although GOES-17 suffered a partial failure of its loop 

heat pipe, which resulted in severe degradation, primarily in the thermal infrared spectral bands, much of the issue has since 

been mitigated. MAGARA uses none of the affected bands. Additionally, the recently launched GOES-18 satellite has now 

taken over operations from GOES-17 (https://www.goes-r.gov/users/transitionToOperations18.html, last accessed 

05/05/2023), which formally resolves this issue. 75 
Each GOES-R series satellite contains an Earth-viewing Advanced Baseline Imager (ABI). ABI measures upwelling 

radiance in 16 spectral bands from 0.5 km to 2.0 km spatial resolution directly above the equator at the longitude of the 

spacecraft, with spatial resolution inversely proportional to the cosine of view-zenith angle. Of these 16 spectral bands, two 

centered on wavelengths of 0.470 μm [blue] and 0.640 μm [red] are sensitive to light in the visible portion of the 

electromagnetic spectrum. Four bands centered on wavelengths of 0.865 μm, 1.38 μm, 1.61 μm, and 2.25 μm are sensitive to 80 
reflected solar radiation in the near-infrared portion of the spectrum. These 6 bands are known as solar reflective bands because 

they measure solar light that has been reflected by the Earth’s atmosphere and underlying land and ocean surfaces. Ten 

additional bands measure light at longer wavelengths, in which emission by the Earth tends to dominate the observed signals. 

Because these 10 longwave bands are sensitive to electromagnetic radiation at wavelengths much longer than the sub-micron 

size of most aerosol particles, with dust and volcanic ash as the main exceptions, we do not use these bands in the MAGARA 85 
aerosol retrievals, as they add minimal information content on the aerosols relative to that contained in the solar reflective 

bands.  
As geostationary imagers view the same region of Earth 24 hours a day, these imagers are inherently optimal for 

applications that require the ability to resolve changes in a local region’s environment (either surface or atmosphere) on short 

timescales. The most obvious and recognizable use of these platforms is for operational weather forecasting. One of the earliest 90 
technical reports on the feasibility of taking space-borne observations of the planet was presented in 1951 and published in 

1960 (Greenfield and Kellogg, 1960). Additional applications include observations of volcanic eruptions via satellite (Cochran 

and Pyle, 1978), as well as classification of volcanic eruption plume particles (Flower and Kahn, 2020a, 2020b; Scollo et al., 

2012) and determination of volcanic aerosol (Kahn and Limbacher, 2012) and wildfire smoke (Junghenn Noyes et al., 2022) 

plume properties. With regards to the MAGARA retrieval described in this manuscript, potential aerosol-related applications 95 
include improvements made to climate modeling of aerosol direct (Matus et al., 2019) and indirect effects (Quass et al., 2020), 
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as well as improvements made to air-quality modeling (Friberg et al., 2018; deSouza et al., 2020). Although this manuscript 

describes and assesses the accuracy of MAGARA for a few small case studies, there are several other research groups 

developing their own aerosol retrieval algorithms for geostationary Earth-viewing imagers. This includes the MODIS dark-

target (DT) group (Gupta et al., 2019; Remer et al., 2020), the MAIAC group (Lyapustin et al., 2018; Li et al., 2019; Wang et 100 
al., 2022), the GRASP team (Li et al., 2020), and the NOAA aerosol team themselves (GOES AOD Algorithm Theoretical 

Basis Document [ATBD], 2018; Liu et al., 2018; Kondragunta et al., 2020; Zhang et al., 2020), among others. Other groups 

have sought to use observations of both GOES-R and GOES-S to constrain the scattering phase function of dust aerosols (e.g., 

Bian et al., 2021). 

Most existing aerosol retrieval algorithms make use of a single sensor at a given time to determine aerosol loadings 105 
and properties. Bian et al. (2021) used both GOES-16 and GOES-17 to constrain the phase functions of dust, but the algorithm 

they developed is not a fully-fledged aerosol retrieval algorithm. Govaerts et al. (2010) used prior generations of geostationary 

imagers to retrieve daily aerosol optical depths and surface BRFs. This is similar to MAGARA, but they only retrieved aerosol 

optical depth (AOD) once per day rather than at every imager snapshot, which is a significant limitation compared to more 

contemporary algorithms (with advanced geostationary imagers). The GRASP algorithm is similar to MAGARA in terms of 110 
its ability to ingest imager data from multiple platforms at multiple times in order to constrain aerosol and surface properties; 

their algorithm is significantly more mature (and generalizable to different instruments/platforms; Dubovik et al., 2014). One 

reason that MAGARA may be able to add value here is our simultaneous use of dual-view imagery combined with our 

exploitation of the varying autocorrelation time-scales for AOD vs aerosol type (Sayer, 2020). Ceamanos et al. (2023) explored 

using 15-minute imagery from the Meteosat Second Generation (MSG) platform in order to perform 15-minute retrievals of 115 
AOD (aerosol type is assumed based on geography and retrieved aerosol optical depth). Zhang et al. (2013) developed a 

simultaneous dual-view aerosol retrieval algorithm using the prior generation of GOES imagers (GOES 11-15). Much of the 

logic of MAGARA follows along Zhang et al.’s line of thinking, including the use of MAIAC data, relative calibration between 

GOES-East and -West, retrieval of the surface using low aerosol loading days, and using simultaneous imagery from GOES-

East and -West to retrieve aerosol loading. MAGARA takes this a step further by directly retrieving the average surface 120 
bidirectional reflectance factor (BRF) over the course of a week (or more) in lieu of using surface reflectance ratios. 

Additionally, MAGARA retrieves daily particle property information about the fine-and-coarse modes as well as retrieving 

aerosol loading and fine-mode fraction at (up to) the cadence of the input observations. 

 As far as the authors are aware, there is no direct analog to MAGARA out there; but any approach that makes use of 

the differing autocorrelation time-scales of surface reflectance (longest), aerosol type (long), and AOD (short), could be used 125 
to extract a significant amount of information about aerosol particle properties, especially if those algorithms exploit (via multi-

sensor data fusion) the next-generation geostationary ring that is currently being assembled. The layout of this manuscript is 

as follows: The MAGARA algorithm methodology is presented in Section 2. Section 3 outlines three separate case studies: 

the Camp Fire, the Williams Flats Fire, and the Kincade Fire. Section 4 details initial comparison/validation of 
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NOAA/MAGARA 550 nm AOD, MAGARA fine-mode fraction, and MAGARA single-scattering albedo with AERONET 130 
sun photometers. General conclusions on MAGARA performance are presented in Section 5. 

2 Methodology 

MAGARA was initially conceived as a way to maximize aerosol information retrieval by fusing top-of-atmosphere (TOA) bi-

directional reflectance factor (BRF) observations (i.e., Level 1B data) from both GOES-16 and GOES-17 onto a common grid, 

tiling these observations over the course of several days to a couple weeks, and then applying knowledge of aerosols/satellite 135 
remote sensing, e.g., the varying autocorrelation time-scales of AOD, aerosol type, and surface reflectance, to develop a pixel-

level (1 km at the sub-spacecraft point) aerosol retrieval algorithm to convert those TOA BRFs into information about aerosol 

loading and aerosol type. This section details that process as faithfully as possible. A code flow chart is presented in Figure 1, 

outlining the process from data download to comparison with AERONET to video presentation of aerosol properties. The 

subsections within this section are presented in a manner consistent with that flow chart.  An example of the output file 140 
generated by MAGARA is presented in the supplemental.  All MAGARA output data used for this publication are available 

in the repository listed at the bottom of the manuscript. 

2.1 MAGARA Data Preparation 

Section 2.1.1 details general scene selection, data download, regridding and radiometric corrections for trace gas absorption. 

Section 2.1.2 outlines how MAIAC surface BRF is ingested into the MAGARA algorithm, MAGARA’s radiative transfer 145 
(RT) look-up table (LUT) is presented in Section 2.1.3, and MAGARA’s initial cloud screening is described in 2.1.4. 

2.1.1 Scene Selection, GOES L1B Data Download, Regridding, and Corrections 

Prior to downloading the radiance data from NOAA, we first identify the central latitude/longitude, date range, and time range 

(time of day) of interest, and the size of the boxes (grid) to be created and then tiled with the GOES Level-1B (L1B) TOA 

BRF data. The date range of interest is typically determined by ensuring that each pixel has at least two cloud-free days (for a 150 
given time of day) and that there is sufficient computer RAM (random-access memory). We identify the time range of interest 

by calculating the solar geometry for our region of interest based on time of day. The time range of interest is then set to ensure 

that the solar geometry does not exceed our LUT values for any pixel within our region of interest (ROI). Because satellite 

view angle directly determines the spatial resolution for a given GOES imager, we then determine whether it would be more 

useful to use GOES-R or GOES-S as our interpolated grid. For feature recognition, higher spatial resolution would typically 155 
be preferred. But for accuracy, it makes more sense to interpolate to the coarsest grid (GOES-R for the western US), as all the 

fine features will not be captured by imager data that have been regridded to higher spatial resolution. For all cases presented 

here, data are interpolated to the standard GOES-R grid, which means that GOES-R data do not need to be spatially 

interpolated. GOES-R and GOES-S radiance data are then downloaded for bands 1, 2, 3, 4, 5, and 6 corresponding to the 
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date/times of interest. The GOES radiance and BRF data are provided courtesy of the GOES-R Calibration Working Group 160 
and GOES-R Series Program [2017]. 

 

 
Figure 1) Algorithmic flow chart of MAGARA, from initial data formatting to video generation and validation. Four FORTRAN 
subroutines compiled and imported into the Python programming environment are shown in the upper right. 165 

 

 Once the data are downloaded, we begin by running the Python program GOESDataFormatter.py. Because different 

spectral bands have different spatial resolutions (0.5-2 km), we first regrid all data to the 0.47-µm band grid (1 km at the sub-

spacecraft point) either by averaging (for the 0.64-µm band) or using a bicubic interpolation for the longer wavelength, coarser 

spatial resolution bands. The program, which was converted to FORTRAN 90, then regrids the GOES-S latitude/longitude 170 
grid to the GOES-R grid using the FORTRAN area-based polygon interpolation program produced by J. M. Zerzan [1989]. 

The final grid is established using the provided central latitude/longitude to identify the closest GOES pixel. Then the algorithm 

uses the user-provided bounding box size to trim the data to the region of interest. Once the regional data have been extracted, 

we then loop over every date/time for each band and GOES-S and GOES-R spacecraft, interpolating to the background grid, 

if necessary, and converting radiances to TOA BRFs. TOA radiances are converted to TOA BRFs via the following 175 
relationship: 

		BRF = L ∗ !∗#!

$"#$
,        (1) 
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where L represents the observed TOA radiance (W m-2 µm-1 sr-1) for a particular band and imaging platform (GOES-R or 

GOES-S here), D is the Earth-Sun distance at the time of observation in Astronomical Units (AU), and ETOA is the exo-

atmospheric solar irradiance at 1 AU (W m-2 µm-1). Because each spacecraft, band, date, and time corresponds to a separate 180 
radiance file (every 10-15 minutes), the algorithm must process about 3,000-10,000 radiance files for a given 7-to-14-day case 

study period. 

 After sorting and tiling these TOA BRFs into a 6-dimensional array, we correct TOA BRFs in bands 1, 2, 3, 5, and 6 

for ozone and water vapor absorption. Ozone absorption primarily impacts bands 1 and 2, whereas water vapor absorption 

impacts bands 3, 5, and 6 most heavily. Correcting for absorption by these gases is simplified by assuming that they are located 185 
above the significant scattering layers in the atmosphere, including those resulting from aerosols. Although this assumption is 

more justified for ozone, we also apply it to water vapor (with acceptable error). The following two-way transmittance 

correction is applied to produce adjusted BRFs that mitigate the presence of absorbing gases: 

BRF%&' = BRF()* ∗ 𝑒𝑥𝑝	 +
+#
,%
, ∗ 𝑒𝑥𝑝 ++#

,
,,      (2) 

where the ozone (272 Dobson Units) + water vapor (1 cm) static gas absorption optical depths (ODs) are taken to be 0.0052, 190 
0.0265, 0.0017, 0.019, and 0.0316 for the 5 bands used by MAGARA, 𝜇 represents the cosine of the viewing zenith angle, 𝜇- 

represents the cosine of the solar zenith angle, BRF()* represents the TOA BRF prior to correction, and BRF%&' represents the 

TOA BRF after correction for trace gas absorption. The second factor in Equation 2 represents the correction to the solar beam 

as it passes through the absorbing layer, and the third factor represents the correction to the surface and atmosphere reflected 

beam as it passes back up through the absorbing layer towards the satellite. The optical depths in Equation 2 are based on an 195 
atmospheric column of ozone appropriate to the region and times of interest. It is unlikely that ozone absorption varies across 

a region in space and time by an amount sufficient to induce significant errors. Water vapor, on the other-hand, may deviate 

significantly from the 1-cm column value assumed when running the RT code for the case study at hand. However, if the 

variation correlates only with time-of-day rather than day-to-day, the algorithm should alias the error into the retrieved surface 

BRF (BRFSurf), yielding a small bias in BRFSurf for the 1.6- and 2.25-μm bands for those times when column water vapor 200 
differs significantly from 1 cm. If the algorithm fails to alias the water vapor errors into BRFSurf, they will show up in the 

retrievals of coarse-mode AODs, as fine-mode AODs have minimal impact on modeled BRFs at 1.6 μm and 2.25 μm. As far 

as we can tell, these assumptions do not negatively impact the results shown in Section 3, but dynamically varying values of 

ozone and water vapor would need to be ingested for any operational version of MAGARA. 

 Once the algorithm has corrected TOA BRFs for ozone and water vapor absorption, the algorithm regrids the data to 205 
either a 10- or 15-min time spacing, depending on GOES observation mode (or user preference), using linear interpolation. 

Although GOES data do not fit exactly to this 10- or 15-min cadence, these data are close to it. So, filling any temporal gaps 

in the data via temporal linear interpolation from the gap’s bounding data is reasonable. This step does not correct for any bad 

data present in the radiance files, but this temporal interpolation does allow us to put the data on a regular temporal grid. These 

gap-filled, corrected BRFs are then stored in a Hierarchical Data Format-5 (HDF-5) file, along with solar and viewing 210 
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geometries, latitudes, longitudes, surface pressures, days, and times for all of the data. A land/water mask is also included in 

the HDF-5 file for diagnostic purposes only, as the retrieval algorithm makes no distinction between land and water surfaces 

in the aerosol/surface retrieval process. 

2.1.2 MODIS MAIAC Surface BRF Data Ingestion 

First, MODIS-MAIAC surface BRF kernels [Lyapustin et al., 2018; Lyapustin and Wang, 2018] are spatially interpolated to 215 
our GOES grid using the polygon-based interpolation technique described previously. This is done by running the program 

magaraMAIACGridder.py which spatially interpolates these surface BRF kernels for the central day of our case study period. 

Because these kernels contain all information necessary to produce the surface BRF at any given time of day, only one set of 

kernels is needed for a given band, pixel, and sensor. As MAGARA directly retrieves the average BRFSurf for a given band, 

sensor, and time of day over the entire time period, the MAIAC data are needed only to correct for small changes in BRFSurf 220 
over that time frame due solely to small differences in solar geometry from day to day for the same time of day. Once these 

BRFSurf kernels have been spatio-temporally interpolated bilinearly to our GOES grid for every time and day on our grid, we 

save this information to the HDF-5 file. 

Note that MAIAC only produces kernels over land. For all over water regions where such BRF kernels are missing, 

the algorithm assumes an initial albedo and surface reflectance of 0.0 for all days, times, and spectral bands. For a given 225 
MAGARA run, the algorithm will retrieve the surface BRF of the water by aliasing differences between our aerosol model 

and the observations (residuals) into the retrieved surface BRF. This will give the retrieved surface BRF a blue hue over water 

and will not impact our retrieval of aerosol properties, as shown in our case studies. 

 Next, these BRFSurf kernels must be converted to actual BRFSurf values as described in Lyapustin et al. [2018]. As 

shown in Figure 1, this is performed in the program GOESCloudMaskandLUT.py. These BRFSurf values, which are stored in 230 
the same size array as the input TOA BRFs, are then added to the MAGARA input file. As with unscreened clouds, real 

changes in BRFSurf values over a given window will cause large errors in retrieved aerosol loading and aerosol properties. For 

such cases, it is also likely that the algorithm will yield elevated residuals, allowing us to screen out such data. 

2.1.3 MAGARA Aerosol Look-Up Table 

Similar to the MISR research aerosol retrieval algorithm (MISR RA; Limbacher and Kahn, 2019; Limbacher et al., 2022), and 235 
just like most other modern aerosol retrieval algorithms, MAGARA uses a prebuilt look-up table of radiative transfer outputs 

in lieu of running a radiative transfer code on the fly, as doing so is orders of magnitude faster. The SCIATRAN Radiative 

Transfer (RT) discrete ordinates solver output is corrected for atmospheric polarization effects, with ordinate density dictated 

by aerosol model (larger particle-size optical models use a denser grid; Rozanov et al., 2014), as was done in Limbacher et al. 

[2022]. The aerosol models (components) used in this paper are identical to the ones that were used in other previously 240 
published work (Junghenn Noyes et al., 2020) and are presented in Table 1. All effective radii are based on an area-weighted 
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calculation of effective radius, as is done in Equation 5.248 of Mishchenko et al. [2002]. The aerosol components presented 

here cover the range of aerosols to which we would expect to have sensitivity with an aerosol retrieval algorithm such as 

MAGARA. In all sections of this manuscript, the use of the term “particle properties” is analogous to “component fraction.” 

This is because MAGARA actually retrieves component fraction, not particle properties, using the principle of linear mixing, 245 
meaning we assume that the TOA modeled BRFs for our aerosol components are aggregated linearly as was done with the 

MISR RA in Limbacher et al. [2022]. This linear mixing of the TOA modeled BRFs also implies that the particle properties 

for each individual component (e.g., SSA in Table 1) are linearly combinable to form aggregate aerosol particle properties.  

 

 250 
 
Table 1: Microphysical and optical properties of the new RA aerosol component climatology. 

Analog (aerosol type) re ANG SSA (550 nm) AAE 
Very small, spherical, strongly absorbing BlS 0.06 2.74 0.80 1.43 
Very small, spherical, strongly absorbing BrS 0.06 3.17 0.80 3.23 

Very small, spherical, moderately absorbing BlS 0.06 2.97 0.90 1.35 
Very small, spherical, moderately absorbing BrS 0.06 3.19 0.90 3.12 

Small, spherical, strongly absorbing BlS 0.12 1.80 0.80 1.34 
Small, spherical, strongly absorbing BrS 0.12 2.04 0.80 3.02 

Small, spherical, moderately absorbing BlS 0.12 2.05 0.90 1.37 
Small, spherical, moderately absorbing BrS 0.12 2.18 0.90 3.14 
Medium, spherical, strongly absorbing BlS 0.26 0.69 0.80 0.91 
Medium, spherical, strongly absorbing BrS 0.26 0.76 0.80 2.36 

Medium, spherical, moderately absorbing BlS 0.26 0.92 0.90 1.08 
Medium, spherical, moderately absorbing BrS 0.26 0.98 0.90 2.74 

Very small, spherical, non-absorbing 0.06 3.22 1.00 N/A 
Small, spherical, non-absorbing 0.12 2.31 1.00 N/A 

Medium, spherical, non-absorbing 0.26 1.22 1.00 N/A 
Large, spherical, non-absorbing  1.28 -0.20 1.00 N/A 

Large, non-spherical, weakly absorbing 1.48 -0.03 0.96 2.71 
BlS represents black smoke and BrS is brown smoke. Column 1 describes the aerosol analogs, column 2 represents effective radius 
(in μm), column 3 is the Ångström exponent (computed from 470-864 nm), column 4 is the single-scattering albedo (SSA) at 0.550-
μm wavelength, and column 5 is the absorption Ångström exponent (AAE, computed from 470-864 nm). Spherical aerosol 255 
component optical properties are modeled using a Mie code with an assumed lognormal particle size distribution. The nonspherical 
component optical models are described in Lee et al. [2017]. 
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The LUT dimensions presented in Table 2 are similar to the older ones used for the MISR RA. The major difference 

is that the SCIATRAN RT code has to be run for a completely different set of spectral bands, as MISR and ABI do not share 

similar spectral responses. Additionally, due to lower expected precision of the GOES measurements and retrievals, only 14 260 
AOD bins are used rather than the 26 bins for the MISR RA. MAGARA uses the exact same algorithm over land and water, 

thereby eliminating the need to account for whitecaps and Fresnel reflection directly in an over-water based LUT. Although 

the LUT in Table 2 is relatively small, we further trim the number of bins for each dimension of the LUT prior to saving the 

modified LUT directly as part of the MAGARA input file for a particular region. Over a small region, μ may only vary by 0.2-

0.5, meaning that we need fewer bins for μ in the LUT (for a given scene), rather than all 19 listed in Table 2. We also do the 265 
same thing for relative azimuth and μ0, trimming the LUT as much as possible. For the Camp Fire case, this resulted in a 75% 

reduction in LUT size, which allowed us to substantially mitigate RAM usage when running MAGARA. 

 

 
Table 2: MAGARA LUT values and dimensionality. 270 

Component name (17) 550 nm AOD (14) λ (nm) (6) μ0 (19) μ (19) ∆ɸ (37) Sfc. pressure (mb) (2) 
sph_abs_0.06_0.80_BlS 0.00 470.3 0.10 0.10 0 608 
sph_abs_0.06_0.80_BrS 0.05 635.6 0.15 0.15 5 1050 
sph_abs_0.06_0.90_BS 0.10 863.8 0.20 0.20 10  
sph_abs_0.06_0.90_BrS 0.15 1608.8 0.25 0.25 15  
sph_abs_0.12_0.80_BlS 0.25 2242.1 0.30 0.30 20  
sph_abs_0.12_0.80_BrS 0.35  0.35 0.35 25  
sph_abs_0.12_0.90_BlS 0.05  0.40 0.40 30  
sph_abs_0.12_0.90_BrS 0.75  0.45 0.45 35  
sph_abs_0.26_0.80_BlS 1.00  0.50 0.50 40  
sph_abs_0.26_0.80_BrS 1.50  0.55 0.55 45  
sph_abs_0.26_0.90_BlS 2.00  0.60 0.60 50  
sph_abs_0.26_0.90_BrS 2.75  0.65 0.65 55  

sph_nonabs_0.06 3.75  0.70 0.70 60  
sph_nonabs_0.12 5.00  0.75 0.75 65  
sph_nonabs_0.26   0.80 0.80 .  
sph_nonabs_1.28   0.85 0.85 .  

Dust   0.90 0.90 .  
   0.95 0.95 175  
   1.00 1.00 180  

The columns are independent of each other, with each column listing the values for the variable in the heading that are included in 
the LUT. The number of values is given in parentheses at the top. The overall dimensionality of the LUT is 7. 
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2.1.4 MAGARA Initial Cloud Screening 

One of the fundamental assumptions of MAGARA is that accurate separation of the surface and atmospheric signals is possible. 

This is predicated on our ability to identify days and times with clouds and thick aerosol, screen them out, and use the remaining 275 
cloud-free days and times to retrieve BRFSurf for each time of day, under the assumption that the day-to-day changes in BRFSurf 

are minimal. 

 After trimming our aerosol RT LUT and saving it to our input HDF-5 file, we then fit a 4th order polynomial to the 

TOA BRFs in the trimmed LUT for each spectral band, ABI imager (analogous to camera for MISR), pixel, and day. For the 

following definition of our cost function, we assume the uncertainty in the TOA BRFs is 1% + 0.001, representing 1% relative 280 
uncertainty plus 0.001 absolute uncertainty in the TOA BRFs, which represents a best-case scenario for either imager. For all 

other cost calculations in this manuscript, we assume a more realistic value of 0.005 + 5%, as recent work suggests an 

uncertainty ranging from 2-5% (McCorkel et al., 2020). We then calculate the discrepancies between the fitted and observed 

TOA BRFs as a cost function: 

Cost.,01(*&) =
∑ ∑ 3

&'(,*,+,,	∗	/012(,*,+,,
"#$ 3012(,*,+,,

456789

:;<(,*,+,,
4

!

*(

∑ ∑ 5(,*,+,,*(
.       (3) 285 

Here, 𝑤6,7,.,0 represents the weights given to a particular observation (1 unless the TOA BRFs are < -0.01, then 0). 𝜆 

represents the spectral band, c represents the platform (GOES-16 or GOES-17), d represents the day, and t represents the time 

of day. Unc represents the uncertainty described above, and the TOA observed (BRFTOA) and modeled (BRFModel) BRFs are 

labeled accordingly. This cost function is then converted into a modeled weighting function via 

Weight.,01(*&) = 1.0 − 8(9:+,,
45678

∑ 8(9:+,,
45678

+
.     (4) 290 

For each time of day (e.g., 10:00 UTC, 10:10 UTC, …, etc.), 𝐶𝑜𝑠𝑡.,0;<.=> identifies the days when the modeled TOA 

BRFs most closely match the observations and generates a weight Weight.,01(*&) bounded by 0 and 1. For times when the model 

closely matches the observations, Equation 4 will yield a Weight.,01(*&) near unity, whereas (4) will yield a Weight.,01(*&) near 

0 when the model is a poor fit to the observations. This weight is then multiplied by a temporally smoothed version of Equation 

4 to capture clouds that are temporally transient. Basically, Equation 4 identifies clouds, and multiplying it by a temporally 295 
smoothed Equation 4 captures the times around which clouds are present. This aggregate weight works well in regions where 

cloud cover is minimal, or cloud cover is temporally random (California and the desert Southwest). For a given time of day, it 

is entirely possible that none of the modeled TOA BRFs (for any day) fit the observations well. In this case, Equation 4 will 

erroneously suggest that at least some of the observations are cloud (or aerosol) free, when this is not the case. For this reason, 

MAGARA must be allowed to run over a sufficient number of days to ensure that there are at least 2 cloud-free days 300 
for every time of day in the dataset. If this condition is not met, the retrieved surface BRFs for the time of day when clouds 
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are present every day will not be accurate. In addition, this would cause errors in the retrieval of aerosol loading and aerosol 

particle properties every day over the improperly weighted region. 

2.2 MAGARA Aerosol and Surface Retrieval Description 

Although the following three subsections detail the complexity of MAGARA, the overall retrieval approach is rather simple. 305 
MAGARA first performs an iterative retrieval of daily averaged fine- (components 1-15 in Table 1) and coarse- (components 

16 and 17 in Table 1) mode aerosol component fractions (from which particle properties are derived), iterating between 

retrievals of surface BRF, time-averaged retrievals of AOD, and retrievals of daily averaged fine- and coarse-mode aerosol 

components. It then performs another iterative set of retrievals towards a more refined surface BRF, this time iterating only 

between retrievals of surface BRF and time-averaged AOD. Finally, the algorithm performs a retrieval of FMF and refined 310 
AOD once, at the cadence of the measurements with no iteration and no time averaging. Retrieval of FMF technically means 

the algorithm retrieves different aerosol particle properties at the cadence of the measurements by allowing selection of 

different fine- to coarse-mode ratios at a 10–15-minute cadence within each day.  

The order in which the final output products are generated is driven by the necessary accuracy of the input data. 

Because fine- and coarse-mode components are assessed on a daily basis, whereas AOD, FMF, and surface BRF are evaluated 315 
at multiple times a day, we have many more, ranging from 30 to 50+, sets of TOA BRF measurements (and up to two ABIs) 

for the daily averaged fine- and coarse-mode component retrieval. As such, the required accuracy of any individual BRF is 

much lower for the daily averaged fine- and coarse-mode component retrieval than that needed to retrieve AOD or FMF, 

which is why the daily averaged fine-and coarse-mode component retrieval is performed first. The refined surface retrieval 

follows next because the retrieved AOD and FMF are quite sensitive to errors in surface BRF. The AOD/FMF retrieval is last 320 
because we have constrained all other parameters necessary in their retrieval. The number of iterations performed in any given 

portion of the code was determined empirically by observing the required number of iterations to reach convergence (using 

pixel-to-pixel smoothness as an indicator of convergence) for the Camp Fire case, with the same number of iterations being 

applied to all three case studies. 

As MAGARA is a research algorithm, we then use the same number of iterations for all three case studies below, 325 
although this will likely be refined in the future. The reason we use an iterative approach is that this is much faster than 

retrieving all parameters simultaneously, as explained in the supplement. For the portion of the code that performs the retrievals 

of daily averaged fine- and coarse-mode components along with their daily averaged fractions (Section 2.2.1), as well as for 

the code that performs refined retrievals of surface BRF (Section 2.2.2), we use different time-averages than for our FMF/AOD 

retrievals. The reason behind these different time averages mostly relates to our inability to separate the atmospheric and 330 
surface scattered signals otherwise, as explained further in Sections 2.2.1 and 2.2.2. 

There are only two ways to properly describe an algorithm like MAGARA: a detailed Algorithm Theoretical Basis 

Document (ATBD), which NASA and NOAA commonly uses for operational algorithms, or a series of flow charts. As 
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MAGARA is not an operational aerosol retrieval algorithm, we present the algorithm as a series of flow charts. The next 

three subsections correspond to bullets 1, 2, and 3 in the algorithmic flow chart panel titled GOESMAGARAMultiCore.py 335 
within Figure 1. These bullets are further broken down as flow charts in Figures 2, 3, and 4, with special emphasis placed 

on the sequential stepwise retrievals within MAGARA as opposed to retrieving all aerosol and surface parameters 

simultaneously.  

After generating the input file as described in the previous subsections, we then run the python program 

GOESMAGARAMultiCore.py which splits the input TOA BRF and BRFSurf data into 50 x 50-pixel chunks that are 340 
(optionally) run in parallel. The Mac Pro used to generate the MAGARA output in Sections 3 and 4 ran 12 instances of these 

50 x 50-pixel chunks at a time. As indicated in the algorithmic flow-chart presented as Figure 1, the algorithm first retrieves 

daily averaged fine- and coarse-mode aerosol component fractions in a subroutine within the file 

magaraAerosolSurfaceProperties.f90. The algorithm then produces a final estimate of BRFSurf within a separate subroutine in 

that same FORTRAN file. Finally, the algorithm retrieves AOD and FMF every 10-15 minutes in a subroutine found within 345 
the FORTRAN file magaraAODFMF.f90, before saving this information in a user-friendly format, as described in the 

supplemental. The following three subsections expand on all aspects of the MAGARA retrieval in a manner consistent with 

how the algorithm runs. 

2.2.1 MAGARA Daily Fine- and Coarse-Mode Component Fraction Retrieval 

A flow-chart of this subsection, from LUT regridding to aerosol component fraction and surface retrievals, is presented as 350 
Figure 2. A common foundation of any well-built remote-sensing retrieval algorithm is the understanding that we cannot 

accurately retrieve everything. Many of the algorithm design choices in this section are based on this understanding. We 

emphasize that a necessary but not sufficient condition for an accurate particle property retrieval of daily fine- and coarse-

mode component fractions is an elevated aerosol loading and multiple cloud-free views. This condition is required for the 

remote-sensing measurements to contain adequate aerosol property information in the presence of a surface that reflects light, 355 
thereby typically degrading aerosol SNR. Additionally, MAGARA is only able to retrieve daily averaged fine- and coarse-

mode component fractions accurately if the BRFSurf and AOD are reasonably well characterized. As explained in the previous 

subsection, errors in TOA modeled BRF will be larger in this step. This is acceptable because we use many more observations 

to constrain these daily averaged fine- and coarse-mode component fractions compared to either the refined AOD or the 

refined surface reflectance retrievals in the subsequent subsections. To better constrain AOD and BRFSurf, this portion of 360 
MAGARA iterates multiple times between retrievals of BRFSurf (for a given time of day, band, and ABI), retrievals of time-

averaged AOD for a given day, and retrievals of daily averaged fine- and coarse-mode component fractions. The retrievals of  
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Figure 2) Flow chart of MAGARA daily fine- and coarse-mode aerosol component fraction retrieval. Output aerosol component 
fractions are converted into aerosol particle properties via Table 1.  365 
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daily averaged fine- and coarse-mode component fractions are based on the principle of linear mixing. As explained in section 

2.1.3, this means that TOA modeled BRFs for a given component can be weighted by a particular component fractional 

contribution for a given AOD, with the sum of the fractional contributions totaling unity, and added together to form one 

aggregate TOA aerosol mixture, as is done for the MISR RA in Limbacher et al. [2022]. This implies that particle properties 

can be aggregated in a similar manner.  370 
The different retrievals used by this portion of MAGARA are presented below: a retrieval of BRFSurf, an AOD 

retrieval, and a daily averaged fine- and coarse-mode aerosol component fraction retrieval. The retrieval of BRFSurf is very 

similar to the retrievals of surface albedo (or remote-sensing BRF) presented in Limbacher et al. [2022]. For a given aerosol 

model, AOD, and BRFSurf, we create a cost function which penalizes the difference between the observed TOA BRFs and the 

modeled TOA BRFs: 375 

Cost6,7,0?@AB =
∑ C5(,*,+,,∗D

/012(,*,+,,
"#$ 3=012(,*,+,,

>?@A B""(,*,+,,
∗ ∗012(,*,,

CDEFG9
:;<(,*,+,,

E
!

F+

∑ 5(,*,+,,+
.       (5)  

Equation 5 is very similar to Equation 6 in Limbacher et al. [2022], with the major difference being the term with BRFSurf, 

which just represents the BRFSurf for a given pixel’s spectral band (l), ABI platform (c), day (d), and time (t). The weights w 

used here are initially the same as those presented in 2.1.4, which allows us to minimize the impact of clouds. One of the 

fundamental assumptions of MAGARA is that BRFSurf is nearly invariant from day-to-day, for the exact same time of day. 380 
For example, the algorithm assumes that BRFSurf at 17:20 UTC for the start day will be nearly the same as BRFSurf at 17:20 

UTC on the end day. Because the BRFSurf model used by MAIAC allows for changes in BRFSurf with solar/viewing geometry, 

a small change in solar geometry causes a slight change in BRFSurf which is accounted for in 𝑇𝑇6,7,.,0∗ , along with accounting 

for multiple reflections of light off the Earth’s surface: 

TT6,7,.,0∗ =
GHI(,*,+,,

4$H$I

〈GHI(,*,+,,
4$H$I〉+

∗ LL(,*,+,,
MN9(,+,,∗O(

.                 (6) 385 

Here, 𝑠6,.,0 represents the average backscatter of the Earth’s atmosphere, including aerosols, for all solar and viewing 

geometries, 𝐴6 represents the spectral surface albedo, and 𝑇𝑇6,7,.,0 represents the two-way transmittance. 𝑠6,.,0 depends on time 

and day here because we allow the algorithm to assume/retrieve a different aerosol model (i.e., set of aerosol component 

fractions) for each day, and 𝑠6,.,0 varies with retrieved/prescribed AOD, which can vary with time. 
𝐵𝑅𝐹𝜆,𝑐,𝑑,𝑡

𝑀𝐴𝐼𝐴𝐶

〈𝐵𝑅𝐹𝜆,𝑐,𝑑,𝑡𝑀𝐴𝐼𝐴𝐶〉𝑑
 represents the 

expected fractional deviation of BRFSurf from the average value over the given set of days. To account for multiple reflections, 390 

we simply multiply through by 1.0 / (1.0-sλ,d,t*Aλ). Similar to our prior publications, we can then analytically solve for BRFSurf 

for a given time of day by taking the derivative of Equation 5 with respect to BRFSurf, setting the result equal to 0, and solving 

directly for BRFSurf: 
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BRF6,7,0?@AB =
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The fact that Equation 7 is similar to Equation 7 from Limbacher et al. [2022] is no coincidence. The ABI imagers aboard 

GOES-16 and GOES-17 are multi-angle imagers, but we can only treat them as such if we tile the observations over time and 

day rather than view angle as with MISR.  

 400 
 Once BRFSurf has been retrieved for the initial assumed aerosol model and AOD (Figure 2), the algorithm iterates to 

a more optimal AOD. This is done by computing a cost function for aerosol loading: 

Cost0,.O&A( =
∑ ∑ C5(,*,+,,∗D

/012(,*,+,,
"#$ 3=012(,*,+,,

>?@A B""(,*,+,,
∗ ∗012(,*,,

CDEFG9
:;<(,*,+,,

E
!

F(*

∑ ∑ 5(,*,+,,(*
 .      (8) 

For each day and time, this cost function is calculated at every AOD bin found in Table 2, with the AOD corresponding to the 

minimum cost identified as the initial guess. This value is then further refined using Newton’s method. Finally, a temporally 405 
averaged AOD over ±16-time bins, or 2.5 – 4.0 hours, is calculated using the updated cloud/heavy aerosol loading weights of 

the AOD established via Newton’s method. This weighting prevents stray clouds from impacting temporally averaged AOD, 

unless cloudiness is persistent throughout the day. Because this algorithm is iterative and Equation 8 is costly to compute for 

every AOD in our LUT, this calculation is only performed once in order to locate a general minimum in cost). Subsequently, 

Newton’s method is solely used to iterate towards a more optimum AOD. 410 
 The final piece of this portion of MAGARA is the retrieval of daily averaged fine- and coarse-mode component 

fractions. Aerosol particle properties are not directly retrieved here. Rather, we assume that the TOA BRF can be modeled as 

a linear combination of RT parameters together with the surface BRF, with aerosol particle properties coming from a linear 

combination of the properties presented in Table 1: 

BRF6,7,.,0ST:U = ∑ mixFrV,. ∗ BRFV,6,7,.,0ST:U
V , 415 

TT6,7,.,0 = ∑ mixFrV,. ∗ TTV,6,7,.,0V , 

s6,.,0 = ∑ mixFrV,. ∗ sV,6,.,0V , 

∑ mixFrV,.V = 1.0.                 (9) 

For all three RT parameters, we are summing over the aerosol component dimension (m), resulting in this dimension being 

eliminated from the new parameter on the left-hand side.	mixFrV,. represents the mixture fraction of all 17 components to the 420 
total aerosol loading for a given day. We define the fine mode as components 1-15 in Table 1 and the coarse mode as 

components 16 and 17 in Table 1. To solve for the optimal mixture fractions, we first set up the following system of linear 

equations using all TOA observations for a given day: 
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HIJ
𝑤M,M,M
UncM,M,MW ∗ NBRFV,M,M,MST:U + TTV,M,M,M∗ ∗ BRFM,M,M?@ABP ∗ mixFrVQ

V

= J
𝑤M,M,M
UncM,M,MW ∗ BRFM,M,ML+O 

⋮        425 

HIJ
𝑤6,7,0
Unc6,7,0W ∗ NBRFV,6,7,0ST:U + TTV,6,7,0∗ ∗ BRF6,7,0?@ABP ∗ mixFrVQ

V

= J
𝑤6,7,0
Unc6,7,0W ∗ BRF6,7,0L+O 

∑ 10X ∗ mixFrV,.V = 10X.           (10) 

For a day with 50 sets of observations (5 bands and 2 GOES platforms), this results in a weighted (using the updated weights 

described above) set of 501 equations and 17 unknowns. The last equation of (10) forces the fractional sum of all components 

to be unity, with the 109 weighting ensuring that this will be the case. This system of linear equations is then solved using a 430 
non-negative least squares (NNLS) solver (Lawson and Hanson, 1995), as was used for the MISR RA for several years. 

2.2.2 MAGARA Refined Surface BRF Retrieval 

To this point, MAGARA has performed retrievals of daily averaged AOD, BRFSurf, and daily averaged fine- and coarse-mode 

component fractions, and has yet to retrieve refined values for either AOD or BRFSurf. As one might expect, an accurate 

retrieval of BRFSurf is critical for the accurate retrieval of AOD, and especially FMF, as described in the next subsection. Here, 435 
we describe our refined BRFSurf retrieval, using the retrieved daily averaged aerosol component fractions, exactly as retrieved 

in section 2.2.1, along with initial guesses for both AOD and BRFSurf, as described in section 2.2.1 (and expanded upon in the 

supplemental). Because this algorithm uses our retrieved daily averaged fine- and coarse-mode aerosol component fractions 

from the previous subsection, this portion of MAGARA only iterates between retrievals of BRFSurf and AOD. To accurately 

retrieve BRFSurf using Equation 7, the algorithm first needs to severely penalize (weight against) times when aerosol/cloud 440 
optical depth is elevated, otherwise clouds (or heavy aerosol loading) will prevent an accurate BRFSurf retrieval. Therefore, we 

perform retrievals of AOD with no time averaging for this part of MAGARA, as this allows us to update our initial cloud 

weighting, improving our final retrieval of BRFSurf. 

A flowchart describing MAGARA’s refined BRFSurf retrieval is presented as Figure 3. This section represents bullet 2 in the 

algorithmic flow chart corresponding to Figure 1, which explains that this refined BRFSurf retrieval is found within a subroutine 445 
called magaraAerosolSurfaceProperties.f90. In the previous subsection we introduce three types of retrievals (i.e., AOD, 

daily averaged fine- and coarse-mode component fractions, and BRFSurf) performed by MAGARA within that section of code. 

As stated above, because we already retrieved the daily averaged fine- and coarse-mode component fractions and use the exact 

component fractions from that retrieval, this section of code only uses two of those three retrievals.  

 450 
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Figure 3) Flow chart of MAGARA refined surface BRF retrieval. 

 

As in the previous section, this portion of the algorithm is best described as loops containing BRFSurf and AOD 

retrievals. The initial aerosol retrieval here does not use any temporal averaging, which allows us to better identify temporally 455 
transient clouds in the scene. After a series of BRFSurf and AOD retrieval iterations with no temporal weights to get better 
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constraints on optical loading, the algorithm uses these 10-15 minute retrieved AODs to update the retrieved surface albedo 

and the retrieval weights, which are negatively correlated with the retrieved optical loading. The algorithm then retrieves AOD 

over ±32 bins, corresponding to timescales ranging from ±5 h to ±8 h, depending on the temporal cadence of the ABI 

instruments during the observation window. This long-window average helps prevent extreme nonlinearity in retrieved BRFSurf 460 
(as a function of time of day) from aliasing into the retrievals of aerosol optical depth, which should be far less variable on 

days with low aerosol loading and are weighted much more heavily for the analytic surface BRF retrieval. After several 

iterations of AOD and BRFSurf retrievals, BRFSurf should have converged to a solution with minimal aerosol artifacts present. 

After first coarsely retrieving AOD using only the bins in our LUT with no temporal averaging, the algorithm then iterates 5 

more times using Newton’s method, again without any temporal averaging. Because these iterations are performed using a 465 
surface with a nearly all-day temporally averaged AOD, it is hoped, and the results over-land bear this out, that any errors 

present in the surface are minimal. A final retrieval of BRFSurf is then performed, and the final output surface parameters are 

updated. 

2.2.3 MAGARA AOD and FMF Retrieval 

After the previous two MAGARA steps, this portion of MAGARA now has access to refined daily averaged aerosol fine- 470 
and coarse-mode component fractions and a refined set of 10–15-minute BRFSurfs. This section now describes the portion 

of MAGARA that implements the refined retrieval of AOD and FMF, information that is critical to fields such as air quality. 

For the case studies presented in section 3, the temporal cadence of the ABI instruments ranges from 10-15 minutes. Because 

the retrievals of AOD and FMF presented here are performed at or near the cadence of the measurements, the temporal 

resolution of these retrievals also varies between 10-15 minutes. A flowchart describing MAGARA’s retrieval of AOD and 475 
FMF is presented as Figure 4. Note that this is different than the retrieval of daily averaged fine- and coarse-mode aerosol 

component fractions retrieved in section 2.2.1. This portion of MAGARA calls a subroutine in magaraAODFMF.f90, shown 

as bullet 3 in Figure 1. 

As BRFSurf for all times and days and daily fine- and coarse-mode aerosol component fractions have been constrained 

in the prior two parts of MAGARA, this portion of MAGARA is far less complicated. For the remainder of this section, we 480 
treat each pixel, day, and time in our multi-day retrieval as a series of for (or do) loops. The algorithm first performs a retrieval 

of FMF, using AOD output from the code described in subsection 2.2.2 as our input AOD and daily averaged fine -and coarse-

mode component fractions output from the code described in subsection 2.2.1 as our input component fractions. The algorithm 

then uses this retrieved FMF in order to get a final estimate of AOD. 

For the retrieval of FMF described in this subsection, RT LUTs are broken down into fine (components 1-15 from 485 
Table 1) and coarse (components 16 and 17 from Table 1) modes. Using the daily averaged fine- and coarse-mode component 

fractions retrieved via the code described in 2.2.1, we get an initial estimate of FMF and CMF. If FMF < 0.1 or CMF < 0.1, 

the daily fine- or coarse-mode aerosol component fractions are too poorly constrained to use them as the initial estimate to 
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generate aggregate RT parameters for that particular mode. If FMF < 0.1, we modify the component fractions described in 

section 2.2.1, adding equal proportions of components 7 and 8 until the FMF reaches 0.10. Coarse-mode contributions are then 490 
reduced by the same fraction until it reaches 0.90. If CMF < 0.1, we modify the component fractions described in section 2.2.1, 

adding equal proportions of components 16 and 17 until the CMF reaches 0.10. The fine-mode contribution is then reduced 

by the same fraction until it reaches 0.90. We then retrieve fine-mode fraction and coarse-mode fraction under the assumption 

that the fine-and coarse-mode TOA BRFs are combinable as a system of linear equations: 

 495 
Figure 4) MAGARA AOD and FMF retrieval flow chart. 
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BRFM,M,0,.IY%& ∗ FMF0,. 	+ BRFM,M,0,.8(TA9& ∗ CMF0,. = T
5U,U,,,+
Z%[U,U,,,+

! ∗ BRFM,M,0,.L+O , 500 

⋮        

BRF6,7,0,.IY%& ∗ FMF0,. 	+ BRF6,7,0,.8(TA9& ∗ CMF0,. = T
5(,*,,,+
Z%[(,*,,,+

! ∗ BRF6,7,0,.L+O , 

10_ ∗ FMF0,. 	+ 10_ ∗ CMF0,. = 10_.          (11) 

Here the weights w are independent of the cloud screening done initially and updated as described above. Instead, w = 1 if the 

TOA BRFs are greater than -0.01, and 0.0000001 otherwise, which eliminates unphysically dark observations sometimes found 505 
at longer wavelengths over water. Although it appears as though Equations 11 are using 6 or 11 equations to solve for 2 

unknowns, CMF is just 1.0 - FMF. As such, Equations 11 are really only solving for FMF, as one could argue Equations 10 

are solving for only 16 unknowns, not 17. Once we retrieve FMF and update the output aerosol models, now as a function of 

day and time rather than just day, we then retrieve a crude estimate of AOD using the cost function we present as Equation 8, 

calculated for all AOD bins and using the weights described a few sentences above. First and second derivatives of cost with 510 
respect to AOD are then computed, and Newton’s method is used to iterate to the final reported AOD at the cadence of the 

ABI measurements. A 10–15-minute new cost function value is then produced, which represents the cost presented in the final 

product. 

2.3 The AERosol RObotic NETwork (AERONET) 

In section 3 we use AERONET measurements and retrievals from dozens of sites across the western half of the United States 515 
to validate AOD and aerosol particle properties for our three case studies. AERONET sun photometers directly measure 

spectral AOD (Holben et al., 1998) at an uncertainty of ~0.01 (Eck et al., 1999; Sinyuk et al., 2012). As in Limbacher et al. 

[2022], we first interpolate AERONET V3 L1.5 AOD to the MAGARA band centers, using a second-order polynomial in log-

space (Giles et al., 2019; Sinyuk et al., 2020). We attempt to limit spatio-temporal variability from negatively impacting 

MAGARA to AERONET comparisons by masking out all AERONET data falling outside a ±10/15-minute window centered 520 
on the GOES acquisition time. AERONET AODs for each of the spectral bands are then averaged over this window prior to 

comparison with MAGARA, as well as for comparison to the NOAA GOES-16 operational AOD product. 

O'Neill et al. [2003] developed a spectral deconvolution algorithm (SDA) to convert AOD at multiple wavelengths 

into a parameter related to fine-mode fraction and total aerosol optical depth at a 500-nm wavelength. The idea behind the 

algorithm is that fine-mode AOD should be highly sensitive to wavelength, because fine-mode aerosols are generally smaller 525 
than the wavelengths of light used by sun-photometers. This causes fine-mode AOD to drop, often dramatically, as wavelength 
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increases, generally reaching undetectable values out near 2.25 μm, the longest wavelength used in MAGARA. Coarse-mode 

AOD often behaves differently with wavelength, as it may show little change in AOD with increasing wavelength. One of the 

most useful features of SDA retrievals is that they are performed at the 15-minute or so cadence of the AERONET direct-sun 

measurements, rather than at the cadence of the almucantar inversions, which are hourly and performed only under favorable 530 
scattering geometries. In sections 4.1 and 4.2, we provide comparisons of MAGARA retrieved 500 nm AOD, and 550 nm 

FMF with the same parameters (FMF at 500 nm) as retrieved by AERONET using their spectral deconvolution algorithm. As 

previously mentioned, MAGARA fine-mode fraction is defined as fractional 550- nm extinction due to aerosol components 

1-15 in Table 1. 

 We also compare SSA to AERONET almucantar retrievals of SSA (Dubovik and King, 2000), with interpolation to 535 
470 nm, 550 nm, 636 nm, and 864 nm done in an identical manner as above. Instead of averaging AERONET inversion data, 

we take the temporally closest MAGARA time, if that closest time is within ± 10-15 minutes of any GOES-16/17 observation. 

Although AERONET almucantar inversions are retrievals themselves, they provide an opportunity to assess, or at least 

compare, particle properties retrieved from imagers such as ABI. Although we present all AERONET and MAGARA SSA 

coincidences where MAGARA AOD is greater than 0.3, it is important to note that AERONET SSA uncertainty itself increases 540 
with decreasing AOD.  

2.4 MAGARA Cloud Screening 

MAGARA cloud/quality screening consists of applying 7 separate thresholds for a given pixel, day, and time, with any 

indicating the presence of cloud labelled as bad data. 

1. AOD<0.05 and cost function > 1, 545 
2. A change in coarse-mode AOD of > 0.05 from one time step to the next over land or >0.10 over water, 

3. Retrieval cost function > 10, 

4. Daily minimum cost function > 0.5, 

5. Temporal minimum cost function > 0.5, 

6. Daily minimum cost function (for a given pixel) > 3 times the 68th percentile daily minimum cost function 550 
calculated over the entire retrieval region and cost > 0.5, 

7. The minimum (among GOES-R or GOES-S ABI) relative spectral standard deviation (standard 

deviation/mean) of TOA BRF for ABI bands 1-3, 5, and 6 < 0.2 (Over water only). 

Failing any of these 7 tests automatically sets the pixel QA value to 1. Afterwards, a pixel may be reclassified as good if the 

minimum 470 nm/2.25 micron BRF ratio exceeds 3 (strongly indicating smoke/pollution). Afterwards, a 3x3 spatial maximum 555 
filter is applied to these QA data, and a rolling maximum temporal filter (+/- 3 time steps) is applied. The tests and threshold 

values described above were devised empirically, by looking at obvious meteorological clouds and surface artifacts in the 
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output MAGARA data. Although these tests appear to work well for the three case study fires (and the hundreds of millions 

of retrievals therein), further work is required to assess their performance in a range of additional scenes.  

The 1st test screens for cloud shadows by identifying regions where the retrieved AOD is low and the model fits are 560 
poor. Because clouds are comprised of coarse-mode droplets, any rapid increase in coarse-mode AOD could be interpreted as 

a cloud (2nd test). The 3rd test is a simple goodness-of-fit test. The 4th, 5th, and 6th tests are acknowledgements that if the 

fundamental assumptions underlying MAGARA are violated, the results will be poor. Namely, if cloud cover is consistent 

from day-to-day for the same time of day, MAGARA’s initial cloud screening will fail to identify all days as cloud. This could 

negatively impact the retrievals of aerosol for both that time of day, and for the entire day itself, depending on how many 565 
cloud-free retrievals were produced for that day. This test also tends to mask out regions where the surface BRF is not 

temporally stable. The last over-water-only test is based on the principle that liquid clouds are nearly spectrally invariant over 

MAGARA’s spectral range, hence they look white, whereas aerosols in the size range typically observed in the atmosphere 

show greater spectral variability. The spatial and temporal filters applied afterwards just ensure that we don’t miss the edges 

of clouds. 570 

2.5 NOAA GOES-16/17 Bias Corrected Aerosol Product 

The operational GOES ABI AOD retrieval algorithm retrieves AOD at 550 nm from GOES-East and GOES-West (ABI AOD 

ATBD, 2018) L1b data. The algorithm also yields a data quality flag (DQF) with the following possible values: 0 (high quality), 

1 (medium quality), 2 (low quality), and 3 (no retrieval). The retrieval algorithm over land is based on the assumption of linear 

relationships between the surface reflectance at 0.47 µm, 0.64 µm, and 2.2 µm, derived from AERONET and ABI high quality 575 
data. The uncertainty in these surface reflectance ratios can cause diurnal biases in retrieved AOD, especially for low-medium 

quality data. Therefore, a bias correction algorithm was developed to reduce the bias (Zhang et al., 2020). The bias correction 

algorithm derives AOD bias by analyzing the 30-day period surrounding a given time and looking for the lowest AOD. A 

diurnal curve is fitted to obtain the lower bound of the 30-day AOD. The difference between the lower bound and the 

background AOD is assumed to be the bias. The bias-corrected AOD is obtained by subtracting the bias from the original 580 
AOD.  Validation shows that the bias correction can improve the performance for the medium-high quality AOD retrieval: 

correlation increases from 0.87 to 0.91, mean bias decreases from 0.04 to 0.00, and RMSE decreases from 0.09 to 0.05. 

Additionally, the medium quality bias-corrected retrievals improve significantly enough to warrant use in quantitative 

applications, resulting in a nearly 100% coverage increase. As a result, we use all bias-corrected results with a DQF <= 1. 

 Although NOAA produces a 2-km (1 km for MAGARA) L2 AOD product for both GOES-R and GOES-S, the GOES-585 
S version was not available for the duration of the Camp Fire. As a result, Camp Fire comparisons between MAGARA and 

NOAA GOES AOD were performed using the bias corrected GOES-16 AOD product. For the two other case studies, we make 

use of the bias-corrected GOES-17 AOD product, which provides substantially more high-quality retrievals (due to the lower 

view zenith angle for GOES-17). Because MAGARA was run at 15-minute cadence for the Kincade Fire case (using 10-
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minute input BRFs), the NOAA bias corrected aerosol product was first regridded to the 15-minute cadence of MAGARA via 590 
linear interpolation (temporally) for AOD, and making use of a maximum filter for the DQF. 

3 MAGARA Case Studies 

This section outlines three separate case studies that demonstrate MAGARA capabilities and provide an initial assessment of 

MAGARA performance. AERONET validation for all three case studies are aggregated and presented in Section 4. 

3.1 Camp Fire, Desert Southwest Region (11/05-11/12, 2018) 595 

The 2018 Camp Fire, California’s deadliest wildfire in history (Erin Baldassari, 2018), killed 85 people and burned > 150,000 

acres of north-central California from November 8-25, 2018 (Maranghides et al., 2021). The fire was entirely contained within 

the county of Butte, California (https://www.fire.ca.gov/incidents/2018/11/8/camp-fire/, last accessed 09/03/2022), and caused 

the destruction of the town of Paradise, along with over 16 billion dollars of damage (Alejandra Reyes-Velarde, 2019). A 

snapshot of the Camp Fire, with MAGARA retrievals of aerosol properties and surface BRF is presented in Figure 5. Videos 600 
can be generated from the MAGARA output for the 3 case-studies, although this is not presented here.  

Although the Camp Fire began on November 8th, MAGARA was run from November 5-12th, as the low optical 

loading days at the start of the time-period were necessary for the algorithm to derive an adequate constraint on BRFSurf. This 

MAGARA run is also unique in that it was run solely with GOES-R, as GOES-S data were not yet available. During this 

period, GOES-R ABI full-disk cadence was 15 minutes, and MAGARA results (and output data) are presented here at that 605 
cadence as well. The reason that we specifically centered on this region, rather than slightly further north, is due to the large 

density of AERONET sites found in the selected area (and the presence of some dust plumes). 

Daily-averaged retrievals of AOD, FMF, effective-radius, SSA, as well as a time-averaged RGB image are provided 

for context as Figure 6. Looking at the entire region, MAGARA retrieves almost all smoke plumes observed as fine-mode-

dominated aerosol. Not only does this match expectation, but we can confirm this with AERONET retrievals of fine-mode 610 
fraction over the same region. According to Figure 6, retrieved aerosol single-scattering albedo appears suppressed on 

November 9th and 10th for California’s Central Valley. Although there are a few AERONET sites in this region that retrieve 

SSA, we can confirm that significant absorption is present by comparing the TOA BRFs for a ~10,0002 km region in the 

northern central valley for the same time of day (10:30 AM) over the case-study observation period. 

We present these spatially-averaged BRFs as Figure 7, with the visible bands shown in the upper panel and the NIR 615 
bands shown in the lower panel. All GOES-R bands are relatively stable from November 5th-8th, but the visible bands show a 

large BRF increase on the 9th as the Camp Fire plume passes over the region. All NIR bands show a BRF decrease on the 9th 

and 10th, with larger decreases at shorter wavelengths. The reason is twofold: most of these absorbing aerosols tend to be very 

absorbing in the NIR, and most natural land surfaces are extremely bright in the NIR (> 800-nm wavelength), especially at 

870 nm and 1.6 μm. When an absorbing aerosol resides over a bright surface, it will diminish the brightness of the scene. For  620 
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Figure 5) Context daily-averaged MAGARA retrievals over the Camp Fire region, Southwest United States, November 8th-12th, 
2018. All panels, including the RGB images, are time-averaged for the entire day. Weights are also applied (0.0001 if not QA, 1 if 
the retrieval passes QA) prior to the time averaging. Each row corresponds to a separate day (8th for the top row and 12th for the 
bottom row). The first column represents the weighted, temporally averaged RGB image for the entire day. The second column 625 
represents the weighted, temporally averaged 550 nm AOD. The third column represents the weighted, temporally averaged 550 
nm fine-mode fraction. The fourth column represents the weighted, temporally averaged effective radius (in microns). The fifth 
column represents the weighted, temporally averaged 550 nm single-scattering albedo. AOD and particle property results are shown 
only if the temporal weight sum is > 1 for the day (at least 1 valid retrieval). Otherwise, they are masked as grey. Particle properties 
are only shown if AOD > 0.30, which represents the minimum we show for comparison to AERONET as well. 630 
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a given aerosol absorption, a brighter surface will yield a larger decrease in TOA BRF.  For this region, the largest absorbing 

aerosol loading is retrieved on 9 November and 10 November. Even with this enhanced absorption, scattering dominates in 

the blue and red bands. However, at 870-nm and 1.6-μm wavelengths the TOA BRF drops significantly due to the absorption 

of these aerosols. Because these aerosols are fine mode dominated, hence small, the signal drop is largest at 870 nm, due to a 

much higher spectral AOD (even though SSA is likely higher), with the decrease significantly mitigated at 2.25 μm due to a 635 
substantially lower spectral AOD and a darker surface. Over-water, BRFSurf at 870 nm, 1.6 μm, and 2.25 μm is nearly 0, except 

in sun glint, as is the signal due to minimal Rayleigh scattering, meaning we will not see any loss in signal, only increases in 

TOA BRF due to scattering. 

 

 640 
Figure 6) Line plot of the GOES-16 10:30 AM PST (17:30 UTC) over-land TOA BRFs in the north-central Camp Fire region as a 
function of day. For this region and time of day, the smoke plume is observed beginning on 9 November 9, with aerosol absorption 
decreasing every day afterwards.  
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3.2 Williams Flats Fire, Pacific Northwest Region (07/29-08/08, 2019) 

The Williams Flats Fire began on 2 August 2019 and burned nearly 45,000 acres of forest, grass, and brush in the 650 
northeastern region of Washington State. During this time, NASA and NOAA were conducting a joint field campaign in the 

western United States designated the “Fire Influence on Regional to Global Environments and Air Quality” (FIREX-AQ). 

As a result of this field campaign, NASA provided AERONET sun photometers across the region to measure total column 

optical loading. There were many other instruments involved, including NASA’s Cloud Physics Lidar (CPL), which flew on 

NASA’s ER-2. The MAGARA dataset presented in this section was the same dataset used to help constrain the lidar ratio 655 
(i.e., the ratio of extinction to backscatter) in Midzak et al. [2022]. Although the Pacific Northwest is not an ideal region for 

satellite aerosol remote sensing due to persistent cloudiness, especially for an algorithm that requires both stable surface 

reflectances and non-persistent cloud-cover, MAGARA was run for the time frame of July 29–August 8, 2019. For the case 

study presented here, the output 10-minute cadence of MAGARA matched the input 10-minute cadence of the GOES-ABI 

full-disk imagery. 660 
We present daily-averaged aerosol particle property results for the Williams Flats Fire region from August 3rd-

August 8th, 2019, as Figure 7. Unlike the other case studies presented here, MAGARA struggled with the persistent cloud 

cover found in parts of the William Flats region. Additionally, the surface BRF was not stable for a region centered on 47º 

North, 117º West. Looking at this region in Figure 7, one can observe the “no retrieval” hole increasing in size with time due 

to this change in surface BRF (and the algorithm’s inability to adapt to it). Even though we were able to screen out these 665 
retrievals, this reveals another limitation of MAGARA. Although our good QA retrievals agree well with AERONET here, 

AERONET was unable to capture any major smoke plume, as AERONET-observed AODs never exceeded 0.5 even though 

MAGARA daily-averaged AOD exceeded 2 on the August 8th. Compared to the previous Kincade and Camp Fires, retrieved 

single-scattering albedos were much higher for the Williams Flats Fire, with the exception of very near source retrievals.  

Figure 8 shows an interesting comparison of retrieved single-scattering albedo vs distance from a 2.25 micron 670 
hotspot for all retrievals found within the Williams Flats Fire region. Although the smoke plumes are relatively absorbing 

near the source, the smoke rapidly becomes nonabsorbing within about 20 km from the source. Tiling observations over a 

day, an algorithm such as MAGARA can extract enough information from ABI to observe changes in aerosol particle 

properties over short distances. The SSA results presented here are similar to retrievals from the information-content-rich 

MISR research algorithm (Junghenn Noyes et al., 2020), which was used to study the same plume. 675 
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Figure 7) Same as Figure 5, but for the Williams Flats Fire region, Pacific Northwest, August 3rd-8th , 2019.  

 

 

https://doi.org/10.5194/amt-2023-146
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.



29 
 

 

 680 
Figure 8) Comparison of average 550 nm single-scattering albedo (y-axis) vs distance from a 2.25 micron hotspot (x-axis) with a BRF 
> 0.99 for the Williams Flats Fire region, Pacific Northwest, August 3rd-8th , 2019. Averaging was done in AAOD and AOD space, 
prior to converting to single-scattering albedo, as this will minimize the impact of retrievals outside the smoke plume. In order to 
minimize the impact of clouds, only retrievals with cost < 20 were used in this analysis. 

 685 

3.3 Kincade Fire, Desert Southwest Region (10/23-11/01, 2019) 

The Kincade fire began on 23 October 2019, burning nearly 78,000 acres of land in Sonoma County, California, through 6 

November (Cal Fire, 2020). Interestingly, GOES-17 detected the heat signature from this fire within a minute of detection 

from ground-based cameras (Lindley et al., 2020). Figure 9 presents daily-averaged retrievals of AOD, FMF, effective radius, 

and SSA for the Kincade Fire region from October 24-29, 2019, even though MAGARA was run from October 23-November 690 
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1. Like the Camp Fire case study, MAGARA was run for several relatively clean days to retrieve BRFSurf. Unlike the Camp 

Fire case, where the temporal cadence of the input observations was 15-minutes, the temporal cadence of the input observations 

here is 10 minutes. The output cadence of the MAGARA retrieval here is 15 minutes, meaning the algorithm automatically 

interpolated the data to a coarser temporal grid. Although this was initially unintentional, this ended up being a useful way to 

ensure that the temporal interpolation code worked as intended. So we present the results (and the output data) for this section 695 
using that 15-minute temporal grid. 

 As in the previous cases, MAGARA identifies almost all smoke plumes as either fine-mode dominated, or a mixture 

of fine-and-coarse aerosol. Retrieved effective radius falls within the range of expectation for biomass burning (~0.1-0.2 

microns), with 550 nm SSA varying from 0.8-0.9 on the west coast, to 0.9-1.0 for the fire in Arizona. On October 27th 

MAGARA retrieves significant coarse mode over the southern Central Valley region of California. Visual inspection of the 700 
TOA BRFs (not shown), and a comparison with AERONET (shown in the comparison section), indicate that this was a dust 

plume activated by a frontal system moving from the north to the south. The plume was present in diminished quantity the 

following day, but only a few pixels of retrievals passed our QA threshold. Another dust plume was activated over the southern 

Central Valley on October 30th, but a radiometric anomaly on the GOES-16 ABI significantly impacted our retrievals for this 

day (the anomaly caused the georegistration to be off by several dozen kilometers for one time-step). Because MAGARA tiles 705 
observations for all bands and ABIs over time and day, one bad set of BRFs can negatively affect the retrievals for the entire 

day or possibly even the entire period. This represents one of the significant limitations of MAGARA, as it makes large-scale 

data processing very difficult. Regardless, properly identifying both fine-and-coarse-mode aerosol in the same scene over land 

represents an important step for an algorithm that uses only scalar, single-view-angle BRFs (albeit from different imagers and 

for different times). 710 
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Figure 9) Same as Figure 5, but for the Kincade Fire region, Southwest United States, October 24th-29th, 2019.  
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4 MAGARA AERONET comparison and validation 

Here we present comparisons of MAGARA AOD and the NOAA G16/17 bias-corrected ABI AOD retrievals with 715 
coincident AERONET data. We also compare retrievals of MAGARA and AERONET FMF and SSA. An overview of the 

optimal spatial averaging window to use for comparison with AERONET is presented in the supplemental. 

4.1 MAGARA and NOAA G16/17 bias corrected AOD, and comparison with AERONET 

Figure 10 shows 2-D histograms of MAGARA vs. AERONET AOD and 2-D histograms of the NOAA bias corrected 

product vs AERONET for the 9x9 spatial averaging window identified in the supplement. For the 10,148 720 
MAGARA/AERONET coincidences, MAGARA presents a RMSE of 0.062, MAE of 0.019, correlation coefficient (r) of 

0.903, and a fairly large bias of 0.017. For the 10,431 NOAA bias corrected/AERONET coincidences, error statistics are as 

follows: RMSE = 0.057, MAE = 0.023, r=0.644, and a small bias of 0.005. For the 8,443 MAGARA/NOAA coincidences 

where both aerosol retrieval algorithms provide at least 1 quality assessed retrieval over the 9x9 region centered on 

AERONET, statistics are as follows: RMSE=0.040, MAE=0.016, r=0.785, and a bias of 0.011 for MAGARA, and 725 
RMSE=0.049, MAE=0.021, r=0.666, and a bias of -0.002. 
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Figure 10) 2-D histograms of MAGARA and NOAA bias corrected 550 nm AOD retrievals vs AERONET 550 nm AOD. The upper 
left panel represents the MAGARA vs AERONET 550 nm AOD 2-D histogram with a 9 x 9 pixel spatial average. The upper right 
panel represents the NOAA GOES-16/17 bias corrected vs. AERONET 550 nm AOD 2-D histogram with a 9 x 9 pixel spatial average. 730 
The bottom rows represent the same as the top row, but with the requirement of at least 1 valid MAGARA and NOAA bias corrected 
pixel for each AERONET coincidence (apples-to-apples). A standard +/- (0.03 + 0.15 * AOD) uncertainty envelope is provided for 
reference, with the percent meeting that threshold indicated. Statistics for each panel are presented in the title.  

 

4.2 MAGARA fine-mode fraction comparison with AERONET 735 

Similar to our MAGARA/NOAA comparison, but now only for MAGARA, we first identify all MAGARA/AERONET 

SDA coincidences within +/- 15 minutes (10 for the Williams Flats case). We then save 9x9 pixels of MAGARA spectral 

AOD and fine-mode fraction centered on the AERONET site, as well as AERONET 500 nm fine-mode AOD and 
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AERONET 500 nm coarse-mode AOD. After identifying all good data (over land and water), we spatially average all 

MAGARA data for each AERONET coincidence prior to spectrally interpolating the MAGARA data in log-log space to 500 740 
nm. This allows us to compare 500 nm AOD and 550 nm fine-mode fraction with AERONET 500 nm AOD and 500 nm 

fine-mode fraction. The difference in wavelength for the fine-mode fraction comparison is likely much less significant than 

the difference in fine-mode definition for MAGARA vs. AERONET. Therefore, MAGARA 500 nm fine-mode AOD is 

presented as 550 nm FMF multiplied by 500 nm spectral AOD. MAGARA 500 nm coarse-mode AOD is presented as (1.0 – 

MAGARA 550 nm FMF) multiplied by 500 nm spectral AOD. 745 
 Figure 11 presents an over-land comparison of MAGARA /AERONET total 500 nm AOD, MAGARA 550 nm 

fine-mode fraction vs. AERONET 500 nm fine-mode fraction, MAGARA 500 nm fine-mode AOD vs. AERONET 500 nm 

fine-mode AOD, and MAGARA 500 nm coarse-mode AOD vs. AERONET 500 nm coarse-mode AOD. The upper-left 

panel of Figure 11 is very similar to the upper-left panel of Figure 10, with the only difference being that Figure 11 is plotted 

as a function of 500 nm AOD instead of 550 nm AOD. The slight discrepancy in the number of coincidences is due to Figure 750 
10’s requirement of at least 512 MAGARA retrievals centered on the AERONET site, vs Figure 11’s requirement of 92; 

meaning we are including AERONET sites in Figure 11 that were not present for the spatial averaging window analysis 

presented in the supplement. Overall statistics for Figure 11 are presented in the title of each panel, but statistics for the 384 

coincidences of fine-mode fraction with MAGARA 500 nm AOD > 0.3 are as follows: MAE = 0.031, RMSE = 0.10, and 

correlation coefficient = 0.902. 755 
 An over-water comparison of MAGARA and AERONET 500 nm AOD (and FMF) is provided as Figure 12. 

 Note that there are far fewer coincidences of MAGARA vs AERONET, and most of the coincidences should be farther from 

the AERONET site (over ocean). This means that it is more likely that MAGARA reports a smoke plume when  

AERONET observes clear sky, as seems to be indicated by the lower-left panel of MAGARA/AERONET 2-D histograms of 

fine-mode AOD. Because the AERONET sites closest to water don’t appear to observe as much coarse mode aerosol as sites 760 
further inland, the FMF statistics over water can’t be used to identify smoke/dust discrimination. The statistics for the 117 

over-water coincidences with 500 nm MAGARA AOD > 0.3 are as follows: MAE = 0.045, RMSE = 0.088, and r = 0.783. 

Interestingly, the clear high bias in MAGARA retrieved fine-mode AOD appears somewhat balanced by a low bias in 

MAGARA retrieved coarse-mode AOD. This discrepancy could be either algorithmic (we don’t use a roughened ocean 

surface model at all for MAGARA) or just due to smoke/dust aerosol variability discrepancy for these case studies. The 765 
Kincade and Camp Fire plots of daily averaged particle properties indicate that we should have good sensitivity to FMF over 

water. Still, we need more data in order to quantify this. Regardless, our total AOD error statistics (MAE = 0.013, RMSE = 

0.087, r=0.889) are similar to our over-land retrievals. 
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 770 
Figure 11) Over land comparison of MAGARA vs. AERONET AOD, fine-mode fraction, fine-mode AOD, and coarse-mode AOD. 
The upper-left panel represents a 2-D histograms of MAGARA vs AERONET 500 nm AOD. The upper-right panel is a scatterplot 
of MAGARA 550 nm fine-mode fraction vs AERONET 500 nm fine-mode fraction, for MAGARA retrieved 500 nm AOD > 0.3. The 
lower-left panel represents a 2-D histograms of MAGARA vs AERONET 500 nm fine-mode AOD. The lower-right panel represents 
a 2-D histograms of MAGARA vs AERONET 500 nm coarse-mode AOD. Statistics for each panel are presented in the title. For the 775 
comparisons of AOD, a standard +/- (0.03 + 0.15 * AOD) uncertainty envelope is provided for reference, with the percent meeting 
that threshold indicated 
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Figure 12) Same as Figure 11, but for over-water coincidences. 780 

4.3 MAGARA single-scattering albedo comparison with AERONET 

Section 3 provides evidence that MAGARA should have (Figure 6) some sensitivity to single-scattering albedo over land. 

Figures 5, 7, and 9 provide some evidence that MAGARA probably has qualitative sensitivity to single-scattering albedo. 

Additionally, Figure 8 indicates that MAGARA may also have sensitivity to over-land gradients of smoke plume SSA. Here, 

we perform a statistical comparison of MAGARA retrieved SSA against AERONET retrievals of single-scattering albedo 785 
performed during almucantar inversions. As in the prior two subsections, we perform 9x9 pixel averages of spectral AOD 

and spectral absorbing AOD before converting to spectral single-scattering albedo. AERONET spectral fine-mode, coarse-

mode, and absorbing AOD are temporally averaged over +/- 10-15 minutes. Still, because the almucantar inversions are done 
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only every hour (at best), we choose the closest (temporal) AERONET inversion. Because AERONET data are unavailable 

for MAGARA’s longest wavelengths, we only compare results for the following wavelengths: 470 nm, 550 nm, 636 nm, and 790 
864 nm. AERONET spectral AOD (fine, coarse, and absorbing) data are interpolated to these wavelengths via fitting to a 2nd 

order polynomial in log-log space prior to conversion to single-scattering albedo. 

It is important to note for this analysis that retrievals of AERONET single-scattering albedo are not fully spectrally 

independent, as restrictions on the smoothness of the imaginary part of refractive index can cause artificial biases in the 

retrieved spectral single-scattering albedo (Sinyuk et al., 2022). Because MAGARA employs discrete aerosol optical models, 795 
the same can be said for MAGARA results. Additionally, MAGARA only retrieves fine-and-coarse-mode aerosol particle 

properties at a daily cadence. However, because fine-mode fraction is allowed to vary at the cadence of reported AOD, 

MAGARA single-scattering albedo can vary over the course of the day. We present color-coded scatterplots of MAGARA 

and AERONET spectral single-scattering albedo as a four-panel plot in Figure 13. For each panel except for the lower right, 

statistics for all data are presented in the title. We also provide statistics for each spectral band separately in the color-coded 800 
legend. At lower AOD (upper left panel; 0.3 ≤ MAGARA spectral AOD < 0.5), the 126 MAGARA retrievals show good 

agreement with AERONET: RMSE = 0.022, MAE = 0.018, and r = 0.752. Because data are only plotted here if MAGARA-

retrieved spectral AOD falls within the range of 0.3-0.5, agreement improves with wavelength, as these data are mostly fine-

mode dominated smoke plumes. At higher AOD (upper right panel; MAGARA spectral AOD > 0.5), correlation  

continues to improve to 0.84, but the error statistics for the 116 MAGARA data points worsen substantially: RMSE = 0.030 805 
and MAE = 0.028. If we plot MAGARA-AERONET spectral SSA as a function of MAGARA-retrieved spectral AOD 

(lower-right panel), we find the source of the discrepancy between correlation and error. Compared to AERONET, 

MAGARA spectral single-scattering albedo becomes increasingly negatively biased with increasing retrieved AOD. 

Although we are unsure of the cause here, a simple bias correction is sufficient to significantly mitigate the issue. 

Figure 14 shows the same MAGARA/AERONET comparison, this time with the following MAGARA bias 810 
correction: SSA = SSA + 0.055 − 0.075𝑒N`, where 𝜏 represents spectral aerosol optical depth. Additionally, MAGARA 

SSA is capped at 0.995, as this is a more realistic upper bound for spectral SSA. All spectral bands show large improvements 

in MAGARA SSA error statistics at elevated AOD (AOD > 0.5): RMSE drops 50% from 0.030 to 0.015, MAE drops nearly 

65% from 0.028 to 0.01, and the correlation coefficient increases from 0.84 to 0.87.  

A comparison of AERONET and MAGARA AAE was also performed, but is not included here.  Although the 815 
agreement with AERONET was poor, there are only 14 MAGARA/AERONET coincidences with MAGARA 863 nm AOD 

> 0.5.  Additionally, the angular smoothness constraints placed upon the AERONET retrieval could substantially impact 

AERONET’s results (Sinyuk et al., 2022; Wagner and Silva, 2008).  AERONET Version 4 should address these issues, and 

we look forward to a comparison at that point. 
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 820 
Figure 13) Over-land MAGARA vs AERONET spectral single-scattering albedo comparison, conditioned on MAGARA retrieved 
spectral AOD. Upper-left panel shows MAGARA (y-axis) vs AERONET (x-axis) spectral single-scattering albedo, for MAGARA 
retrieved AODs between 0.3 and 0.5. Upper-right panel shows MAGARA (y-axis) vs AERONET (x-axis) spectral single-scattering 
albedo, for MAGARA retrieved AODs greater than 0.5. Lower-left panel shows MAGARA (y-axis) vs AERONET (x-axis) spectral 
single-scattering albedo, for MAGARA retrieved AODs greater than 0.3. Lower-right panel shows MAGARA single-scattering 825 
albedo errors (y-axis) vs MAGARA retrieved spectral AOD (x-axis), for MAGARA AOD > 0.3. Statistics for all points within a plot 
are presented in the title. Spectral single-scattering albedo statistics are presented in the legend. The solid black line in the lower-
right panel is represented by 0.075e-AOD – 0.055. 
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 830 
Figure 14) Same as Figure 13, but with bias correction of (0.075e-AOD – 0.055) subtracted from the data. 

 

 

5 Conclusions 

In Section 1, we delve into the history of geostationary remote sensing, briefly describing some of the advances in 835 
geostationary imagers, especially as they relate to the advanced baseline imager. We also present MAGARA in the context 

of other work being done in this area. Section 2 gives a detailed overview of MAGARA, from data download and initial 

processing to aerosol and surface retrievals. By the end of section 2, MAGARA should manifest as a multi-faceted pixel-

level (up to 1 km) retrieval algorithm that operates on relatively simple and realistic (for certain geographic regions), 
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assumptions for a given location in the geostationary field-of-view: (1) initial cloud screening is adequate to remove most 840 
clouds; (2) the surface BRF (i.e., reflectance) changes minimally from day-to-day for a given time of day from a 

geostationary perspective; (3) fine- and coarse-mode aerosol particle properties vary minimally over the course of a day, 

though their AOD and fine-to-coarse ratio might not; and (4) aerosol loading (i.e., AOD) and the fraction of fine-to-coarse 

modes may change rapidly over 10-minute to 1-hour time-scales. Because the last three assumptions hold up quite well in 

most situations, as illustrated by the results, the success of MAGARA for these current case studies is mostly driven by our 845 
ability to screen clouds and cloudiness in general, a common problem in all aerosol remote sensing. 

In Section 3, we present three case studies demonstrating the qualitative efficacy of MAGARA: the 2018 Camp 

Fire, the 2019 Williams Flats Fire, and the 2019 Kincade Fire. Retrievals for the 2019 Camp Fire, which devasted the town 

of Paradise, California, demonstrate MAGARA’s qualitative sensitivity to total aerosol loading, single-scattering albedo and 

fine-mode fraction. These results are impressive considering that MAGARA was run only for GOES-16, as GOES-17 data 850 
were unavailable. 

For our second case study, we analyzed the 2019 Williams Flats Fire over the Pacific Northwest region of the 

United States and southwestern Canada. AERONET-reported AODs are too low to validate information about aerosol 

particle properties. Still, retrievals of single-scattering albedo from MAGARA suggest qualitative sensitivity to gradients in 

single-scattering albedo, consistent with MISR RA retrievals over the same region. This case study also highlights one of the 855 
problems with MAGARA, an assumption of near-invariance in the surface reflectance from day to day. 

For our third case study, we analyzed the 2019 Kincade fire over the same region as for the Camp Fire case study. 

Over the course of several days, MAGARA observed several smoke plumes, identifying them as being dominated by fine-

mode, absorbing aerosol. Interestingly, two days within this case study show significant dust plumes which MAGARA 

retrieves as coarse-mode aerosols, one of which is also captured by AERONET. This case study also highlighted a potential 860 
limitation of MAGARA. A large georegistration anomaly on October 30th for GOES-16 caused the algorithm to mask out 

much of that days’ retrievals as poor quality. Because MAGARA tiles observations over both day and time-of-day for 

several days, the algorithm is especially sensitive to temporally varying radiometric/georegistration errors. 

 In Section 4, we provide comprehensive validation of MAGARA AOD, fine-mode fraction (FMF), and single-

scattering albedo (SSA) against AERONET using only +/- 10-15 minute temporal averages for AERONET while also 865 
providing some context with NOAA’s bias-corrected aerosol product. After identifying an optimal averaging distance of 92 

pixels (retrievals), we compare MAGARA and the NOAA bias-corrected product against AERONET for the same 8,443 

coincidences. Overall, MAGARA median absolute error (MAE; 0.016 vs. 0.021) and root-mean-squared error (RMSE; 0.040 

vs. 0.049) are approximately 25% lower than the NOAA bias-corrected retrievals, with a correlation coefficient of about 

0.12 larger (r; 0.785 vs. 0.666). Additionally, MAGARA quality appears significantly better at smaller spatial scales (smaller 870 
averaging window). 

https://doi.org/10.5194/amt-2023-146
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.



41 
 

 

 Comparing MAGARA retrievals of fine-mode fraction to AERONET spectral deconvolution data (n=384), we 

report the following over-land error statistics: MAE=0.031, RMSE=0.100, and r=0.902. This suggests that MAGARA is 

sensitive to fine-mode fraction at a temporal cadence of 10-15 minutes. 

 We also compare retrievals of MAGARA spectral single-scattering albedo with AERONET, even though 875 
MAGARA only retrieves fine-and-coarse-mode aerosol particle properties at a daily cadence. Because MAGARA does 

retrieve fine-mode fraction at a much higher cadence, retrieved single-scattering albedo technically varies at the cadence of 

reported AOD/FMF. For MAGARA-retrieved spectral AOD between 0.3 and 0.5 (relatively low AOD, n=126), MAGARA 

agrees well with AERONET: MAE=0.18, RMSE=0.022, and r=0.752. At higher AOD, MAGARA suffers from a large 

negative bias in retrieved SSA, resulting in the following error statistics for our 116 MAGARA/AERONET coincidences: 880 
MAE=0.028, RMSE=0.030, and r=0.840. A simple single parameter (AOD) bias correction is then presented, resulting in the 

following error statistics at high AOD: MAE=0.010, RMSE=0.015, and r=0.870. Although we don’t delve into the causes of 

this SSA bias, it is likely at least partially because MAGARA only retrieves fine-and-coarse-mode aerosol properties at a 

daily cadence, and that the much higher cadence of retrieved fine-mode fraction is unable to compensate for real diurnal 

variability in SSA. From a retrieval standpoint, the fact that an AOD-based bias correction can substantially mitigate this 885 
issue is very interesting and convenient. That being said, we will need much more data to verify these findings. 

This manuscript demonstrates MAGARA’s ability to retrieve AOD and aerosol properties such as fine-mode 

fraction and single-scattering albedo. Satellite observations from the Camp Fire case indicate that aerosol absorption was 

substantial at 870 nm, as the top-of-atmosphere signal declined significantly when the plume moved over the region. 

MAGARA was capable of discriminating smoke from dust for the Kincade Fire case study. MAGARA’s ability to discern 890 
aerosol loading and particle properties from geostationary data could profoundly impact our ability to accurately model 

aerosol within climate models. Additionally, the 10-minute cadence of MAGARA retrievals and our ability to accurately 

separate the fine and coarse modes could significantly improve air-quality modeling and forecasting in certain regions. The 

regions most likely to benefit from a MAGARA style approach are those places where surface reflectance is slow to vary 

and cloud-cover is minimal: the western US, North-Central Africa, the Middle East, parts of Central Asia, and large portions 895 
of Australia. 
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